Analysis 1, Summer 2023

List 1

Sequences, limits of sequences

- 20. If $a_n = (n+2)^3$, give the value of a_3 .
- 21. For the sequence $b_n = n^{-n}$, what are the values b_1 , b_2 , and b_3 ?
- 22. If $c_n = (1 + \frac{1}{n})^n$, what are the values c_1 , c_2 , and c_3 ? Give exact formulas (by hand) and decimal answers (using a calculator).
- 23. For the sequence $a_n = n^2 1$, give a formula for a_{n+1} .
- 24. Consider the sequence

$$a_1 = 2$$

$$a_2 = 22$$

$$a_3 = 222$$

$$a_4 = 2222$$

$$a_n = \underbrace{22...2}_{n \text{ digits}}$$

- (a) Calculate $(10a_1 + 2) a_1$, then $(10a_2 + 2) a_2$, then $(10a_3 + 2) a_3$.
- (b) Find a formula for $(10a_n + 2) a_n$ in terms of n only.
- (c) Find a formula for a_n .

The sequence a_n converges to the real number L if for any $\varepsilon > 0$ there exists an N such that

 $L - \varepsilon < a_n < L + \varepsilon$ for all n > N.

In this case we say the **limit** of the sequence is L, and we write

$$\lim_{n \to \infty} a_n = L.$$

A sequence that does not converge to any number is said to **diverge**.

25. (a) For which positive integers n is $4 - \frac{1}{100} < \frac{8n}{2n+9} < 4 + \frac{1}{100}$? (b) For which positive integers n is $\frac{8n}{2n+9} = 4$? (c) Is it true that $\lim_{n \to \infty} \frac{8n}{2n+9} = 4$? 26. Calculate $\lim_{n \to \infty} \frac{3n^2 + n + \sqrt{n}}{5n^2}$.

27. Determine whether each sequence converges or diverges.

(a) n^n \bigstar (d) $\sin(3n)$ (b) $\frac{n}{n+1}$ (e) $\sin(\pi n)$ (c) $(-1)^n$ (f) $\frac{(-1)^{n+1}}{n^n}$ We say a_n diverges to infinity and write $\lim_{n \to \infty} a_n = \infty$ if for any M > 0 there exist an N such that $a_n > M$ for all n > N. Similarly, we write $\lim_{n \to \infty} a_n = -\infty$ if for any M > 0 there exist an N such that $a_n < -M$ for all n > N.

28. Find the following limits if they exist.

(a)
$$\lim_{n \to \infty} \frac{n+13}{n^2}$$

(b)
$$\lim_{n \to \infty} \frac{(n+5)(n-2)}{n^2 - 6n + 7}$$

(c)
$$\lim_{n \to \infty} \frac{n^2}{n+13}$$

(d)
$$\lim_{n \to \infty} -2^n$$

(e)
$$\lim_{n \to \infty} (-2)^n$$

(f)
$$\lim_{n \to \infty} 2^{-n}$$

(g)
$$\lim_{n \to \infty} 2^{1/n}$$

29. Find $\lim_{n \to \infty} \left((9\sqrt{n} + \frac{1}{\sqrt{n}})^2 - 81n \right).$

- $\stackrel{\text{tr}}{\approx} 30$. Find $\lim_{n \to \infty} n \cdot (2^{1/n} 1)$. The $\stackrel{\text{tr}}{\approx}$ means that this task is harder than what is normally expected in this course.
 - 31. (a) Simplify the formula $\frac{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}{\sqrt{n}+\sqrt{n-1}}.$ (b) Find $\lim_{n\to\infty}\sqrt{n}-\sqrt{n-1}.$

32. Use the Squeeze Theorem with
$$\frac{-1}{n} \leq \frac{\cos(n)}{n} \leq \frac{1}{n}$$
 to find $\lim_{n \to \infty} \frac{\cos(n)}{n}$

A 33. Use the fact that $\left(1 - \frac{1}{\sqrt{n}}\right)^n \le \frac{1}{n}$ to find $\lim_{n \to \infty} (1/n)^{1/n}$.

34. (a) The *definition* of the number "0.385" is

$$3 \cdot 10^{-1} + 8 \cdot 10^{-2} + 5 \cdot 10^{-2}.$$

Write this number as a fraction (or an integer, if possible).

(b) The definition of the number "0.2222..." is the **limit** of the sequence $S_1 = 0.2$ $S_2 = 0.22$ $S_3 = 0.222$ $S_4 = 0.2222$ $S_n = 0.222.2$ n digits

Write this number as a fraction (or an integer, if possible). Hint: See Task 24(c).

(c) The *definition* of the number "0.9999..." is the *limit* of the sequence $S_n = 0.99...9_{n \text{ digits}}$.

Write this number as a fraction (or an integer, if possible).