List 1

Sequences, limits of sequences
20. If $a_{n}=(n+2)^{3}$, give the value of a_{3}.
21. For the sequence $b_{n}=n^{-n}$, what are the values b_{1}, b_{2}, and b_{3} ?
22. If $c_{n}=\left(1+\frac{1}{n}\right)^{n}$, what are the values c_{1}, c_{2}, and c_{3} ? Give exact formulas (by hand) and decimal answers (using a calculator).
23. For the sequence $a_{n}=n^{2}-1$, give a formula for a_{n+1}.
24. Consider the sequence

$$
\begin{aligned}
a_{1} & =2 \\
a_{2} & =22 \\
a_{3} & =222 \\
a_{4} & =2222 \\
a_{n} & =\underbrace{22 \ldots 2}_{n \text { digits }}
\end{aligned}
$$

(a) Calculate $\left(10 a_{1}+2\right)-a_{1}$, then $\left(10 a_{2}+2\right)-a_{2}$, then $\left(10 a_{3}+2\right)-a_{3}$.
(b) Find a formula for $\left(10 a_{n}+2\right)-a_{n}$ in terms of n only.
(c) Find a formula for a_{n}.

The sequence a_{n} converges to the real number L if for any $\varepsilon>0$ there exists an N such that

$$
L-\varepsilon<a_{n}<L+\varepsilon \quad \text { for all } n>N .
$$

In this case we say the limit of the sequence is L, and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

A sequence that does not converge to any number is said to diverge.
25. (a) For which positive integers n is $4-\frac{1}{100}<\frac{8 n}{2 n+9}<4+\frac{1}{100}$?
(b) For which positive integers n is $\frac{8 n}{2 n+9}=4$?
(c) Is it true that $\lim _{n \rightarrow \infty} \frac{8 n}{2 n+9}=4$?
26. Calculate $\lim _{n \rightarrow \infty} \frac{3 n^{2}+n+\sqrt{n}}{5 n^{2}}$.
27. Determine whether each sequence converges or diverges.
(a) n^{n}
s (d) $\sin (3 n)$
(b) $\frac{n}{n+1}$
(e) $\sin (\pi n)$
(c) $(-1)^{n}$
(f) $\frac{(-1)^{n+1}}{n^{n}}$

We say a_{n} diverges to infinity and write $\lim _{n \rightarrow \infty} a_{n}=\infty$ if for any $M>0$ there exist an N such that

$$
a_{n}>M \quad \text { for all } n>N .
$$

Similarly, we write $\lim _{n \rightarrow \infty} a_{n}=-\infty$ if for any $M>0$ there exist an N such that

$$
a_{n}<-M \quad \text { for all } n>N .
$$

28. Find the following limits if they exist.
(a) $\lim _{n \rightarrow \infty} \frac{n+13}{n^{2}}$
(d) $\lim _{n \rightarrow \infty}-2^{n}$
(b) $\lim _{n \rightarrow \infty} \frac{(n+5)(n-2)}{n^{2}-6 n+7}$
(e) $\lim _{n \rightarrow \infty}(-2)^{n}$
(c) $\lim _{n \rightarrow \infty} \frac{n^{2}}{n+13}$
(f) $\lim _{n \rightarrow \infty} 2^{-n}$
$\hat{*}(\mathrm{~g}) \lim _{n \rightarrow \infty} 2^{1 / n}$
29. Find $\lim _{n \rightarrow \infty}\left(\left(9 \sqrt{n}+\frac{1}{\sqrt{n}}\right)^{2}-81 n\right)$.
$\grave{\star 30}$. Find $\lim _{n \rightarrow \infty} n \cdot\left(2^{1 / n}-1\right)$. The $\grave{\hbar}$ means that this task is harder than what is normally expected in this course.
30. (a) Simplify the formula $\frac{(\sqrt{n}-\sqrt{n-1})(\sqrt{n}+\sqrt{n-1})}{\sqrt{n}+\sqrt{n-1}}$.
(b) Find $\lim _{n \rightarrow \infty} \sqrt{n}-\sqrt{n-1}$.
31. Use the Squeeze Theorem with $\frac{-1}{n} \leq \frac{\cos (n)}{n} \leq \frac{1}{n}$ to find $\lim _{n \rightarrow \infty} \frac{\cos (n)}{n}$.
32. Use the fact that $\left(1-\frac{1}{\sqrt{n}}\right)^{n} \leq \frac{1}{n}$ to find $\lim _{n \rightarrow \infty}(1 / n)^{1 / n}$.
33. (a) The definition of the number " 0.385 " is

$$
3 \cdot 10^{-1}+8 \cdot 10^{-2}+5 \cdot 10^{-2} .
$$

Write this number as a fraction (or an integer, if possible).
(b) The definition of the number " $0.2222 \ldots$... is the limit of the sequence

$$
\begin{aligned}
& S_{1}=0.2 \\
& S_{2}=0.22 \\
& S_{3}=0.222 \\
& S_{4}=0.2222 \\
& S_{n}=0 . \underbrace{22 \ldots 2}_{n \text { digits }}
\end{aligned}
$$

Write this number as a fraction (or an integer, if possible).
Hint: See Task 24(c).
(c) The definition of the number "0.9999..." is the limit of the sequence

$$
S_{n}=\underbrace{09 \ldots 9 .}_{n \text { digits }} .
$$

Write this number as a fraction (or an integer, if possible).

